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Contravariant Metric

We shall take the contravariant metric g*v
and covariant vectors w, as the starting
point for discussion of the pseudo-metric.
Traditionally, of course, just the opposite is
done: one starts with the covariant metric
g,, and contravariant vectors V.

But the physical interpretation of the first-
order formalism for general relativity
suggests taking the contravariant approach.



First-Order Lagrangian

The Lagrangian density is:
L =(-g,)¥2g"A (I, OI)
= (-g”)/2g"A (I, OT).
In this equation, A, (I, dI') is the affine Ricci

tensor written as a function of the symmetric
affine connection I’ and its first derivatives oI’

Thus, only the contravariant metric is

needed to derive the gravitational field
equations, as we shall discuss in detail later.



Take the high road

the view 1s better



So We'll Take the High
Road!

D




My Apologies in
Advance

Time limits require brevity and brevity is
the mother of dogmatism.

None of my statements should be
interpreted dogmatically— they are meant

to stimulate critical thinking and further
discussion.



“Flat” versus “Sharp”

Quantities formed from the
covariant metric g,, will be called
“flat” & distinguished by the
symbol “,”; while quantities
formed from the contravariant
metric g*¥ will be called “sharp” &
distinguished by the symbol “*”.



Space-Time Structures in GR

Zeroth order: 4-Dim Differentiable Manifold X,

Diff (X,), Unimodular SDiff(X,), Tangent and
Cotangent Spaces, Volume elements

First Order: Affine Connections, Pseudo-metrics
and Connections, Compatibility conditions

Conformal and Projective structures, Torsion

Second order: Affine, Metric, Conformal and
Projective Curvature tensors and a

Ricci tensor for each curvature tensor



Space-Time Structures in GR

| shall emphasize certain relations
between these structures:

Compatibility between Two

Co-Determination of a Third

NB: All structures are four-dimensional unless
otherwise indicated

(e.g., “volume” = “four-volume”)

“Metric” = “pseudo-metric with Lorentz
signature (+---)”
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Differentiable Manifold:
Zeroth Order Structures

4-Dim Differentiable Manifold X,
with Symmetry Group: Diff(X,)
Tangent Space T,(X,) at each peX,

Centered Affine Space with
Symmetry Group: GL(4, R)



Tangent Space
TxM




The General Linear Group and its
Subgroups

G, The affine group A £ 0, E, Affine Space
G,, Homogeneous trans’ns A # 0, Centered E,
G,, Equivoluminar A =11, E with given unit volume

G,, Special affine trans’ns A =+1, E_with given unit
volume and screw sense

G50 Pseudo-orthogonal trans’'ns A #0, C, (rotations,
reflections and similarity transformations)

G,;.n Pseudorthonormal trans’ns A =1, R, (rotations

and reflections)

G,,,r Pseudo-rotations A = 1, Oriented R, (rotations)



Coordinatization

M tangent
space

M

(1) n-cdimensional
coordinate manilold
A chart
open subset
of "
N R

local coordinates
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Vectors and Covectors




Contraction of vector
and covector




A Curve on the Manifold M is a
smooth map y: -e<R<e—M

Image Set

\

-




Zero'" Order Dualities
Differentiable Manifolds

Vectors V Covectors w
Dual Pair if (w,V)=1
Multivectors V! - Forms w | |

T (X,) tangent space T*(X ) cotangent space

Fibration Foliation
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/'

Dual Spaces:
Tangent T (X ), Cotangent T*(X )

Tangent Bundle

alar Product
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Foliation







Fibration and Foliation




Foliation and Dual Fibration
(w,V) =1, V=dx/do
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Invariantce of Duality
Under Certain Changes of V:

(w,V+cW) = 1

V: -./' V+W

W

Vé £v+2w

2W



Some Things Einstein Got Right!!

1) The Hole Argument: Points of Space-Time
have no inherent physical properties-- They
inherit all of these properties from the Space-
Time Structures, including all fields

Conclusion: No first order space-time
structures or fields, no space-time!

If the water drains out of this bathtub, it
takes the bathtub with it!
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GR is a Background-
Independent Theory

The contrast between general relativity and all
previous theories:

Background-dependent theory: Fixed and given
space-time stage, on which the drama of physics
unfolds.

Background-independent theory: No actors, no stage,
no anything.

Einstein put it this way:

“Space-time does not claim existence on its own, but
only as a structural quality of the field.”
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“Relativity and the Problem of
Space” (1952)

On the basis of the general theory of
relativity ... space as opposed to ‘what
fills space’ ... has no separate existence.
If we imagine the gravitational field to
be removed, there does not remain a
space of the type [of SR], but absolutely
nothing, not even a ‘topological space’.
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Realizing Einstein’s Vision

The concepts of fiber bundles and sheaves
enable a mathematical formulation of general
relativity consistent with Einstein's vision.

But we have no time to go into this. See, e.g., the PowerPoint

Structures and Categories

John Stachel
Center for Einstein Studies
Boston University

Florence Category Day
16 June 2010

And the paper:
"The Hole Argument and Some Physical and Philosophical Implications,”
Living Reviews in Relativity, 2014
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Differentiable Manifold:
First Order Structures

Pseudo-Metric with Lorentz signature
(+ ---), Minkowski Space is the tangent
space with symmetry group 0O(3,1)

Affine Linear Connection, covariant
derivative and affine curvature
tensor with symmetry group Aff(4)

Compatibility Conditions



Reasons for Adopting the
Equivoluminar Condition A = 1

1) To restrict the pseudo-orthogonal group locally
and the pseudo-orthogonal metrics globally,
resulting in the invariant decomposition of the
pseudo-orthogonal metric into an equivoluminar
(det = -1) pseudo-orthogonal metric and a scalar

field.

2) To restrict the affine geometry locally and the
linear affine connection globally, resulting in the
invariant decomposition of the connection into a
trace free connection and a one form.
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SR: Minkowski Space-Time

NSWRe LIGHT OV



Lorentz Metric: Spacelike Foliation,
Timelike Normal
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Lorentz Metric: Null Hypersurface

- .-y o

: initiad 2—sutfuce

33



Lorentz Metric: Double
Null Foliation




Conformal Two-Structure

An analysis of the field equations shows that
the two gravitational degrees of freedom
may be chosen, with no constraints, as the
conformal 2- structure.

The dynamical equations then consist of two

equations, which propagate the conformal
2-structure.

See R.A. d’Inverno and J. Stachel, J. Math, Phys. 19 (1978): 2447.



First Order Dualities

Pseudo-Metric

g,(V,V) g% (w, w)
Vis timelike if g, (V,V)>0 w is spacelike if g"(w, w)>0
““pull “ “ =0 “O  pull “ “ =0
“ “spacelike “ “ <0 ““ timelike “ “ <0

Metric Connection
D, D*

{mab}b {nma}#
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Reminder: “Flat” versus
llsharp"

Quantities formed from the covariant
metric g,, will be called “flat” and
distinguished by the symbol “,”; while
qguantities formed from the
contravariant metric g*V will be called
“sharp” and distinguished by the
symbol “#”,



“Flat” Christoffel Symbols

The “flat” Christoffel symbols of the first
kind, are defined by:

[Av, u], =%(-0,9,,+0,9,+0,9,,)-
The usual “flat"metric connection {*, } is
defined as:

K,\v} = [AV;IJ]b g .
It follows that:

DM g)\v = au gAv - [MAI v]b- [MVIA]b
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“Sharp” Christoffel Symbols

The “sharp” Christoffel symbols of the first
kind, are defined by:

[Av, u]* = %(g"0,g""- g0, g*- "0, g").

The usual “flat"metric connection {#_;} can
now be defined as:

{MO(B} = [AV, M]#gva g/\B .
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“Sharp” Christoffel Symbols

But we now define “sharp” Christoffel
symbols of the second kind:

{"* Y=g4[Av, Iv‘]#g;(a,
from which it easily follows that:
D, g}lv - aa gln + {v)la}# + {Ava}# = 0.
We shall see that there is no need for the
“flat” Christoffel symbols.
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“Sharp” Covariant
Derivatives

It follows from this definition that:
D#g"’ = g"#0,g" + [uv,A}*+ [uA,v]*.

Similarly, by using the sharp Christoffel
symbols {*#_}*, we can show that

DtV = gitg VWY + {H_ }v
and
D'w = g“d w ~{" } w, .
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The Inertial Structure

This determines the motion of freely-
falling (i.e., net force-free) bodies
(“particles”) in both classical and special-
relativistic physics:

They follow the straightest time-like,
inertial paths (autoparallels) of space-
time-- straight lines for the

“flat” (curvature = 0) space-times of both
N-G and Minkowski space-time.
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Parallel Transport Along a
Time-Like Curve

A\

/

/

Timelike curve



Autoparallel Curves

A curve is a parametrized path.

If the tangent vector field to a
curve is parallel transported

into itself along the curve, it is
called an autoparallel curve (&
often loosely called “a geodesic”)



Affine Connection

The affine connection ', represents the
inertio-gravitational structure of space-time.

The affine connection ', determines the
autoparallel behavior of free particles

We assume the connection is symmetric:

The torsion tensor §*, ;=1 =0.
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Law of Inertia and Autoparallels

The affine connection ', determining the
autoparallel behavior of free particles can

be split into:

The trace-free projective parameters 1,
which determine the autoparallel paths.

The trace of the affine connection 0,=I",,
which determines a parameterization, turning

the paths into autoparallel curves
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Non-Flat Affine Connection

The affine connection I, represents the
inertio-gravitational structure of space-time.

The affine connection ', determines the
autoparallel behavior of free particles

We assume the connection is symmetric:

The torsion tensor %, =", =0.

uv]
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Affine Curvature




Affine Curvature Tensor

The affine curvature tensor is
Ay = 2001 5y 0+ 201 P
The affine Ricci tensor
AM:A

Ku]l ’
The homothetic curvature tensor
Vi = A

A, is not necessarily symmetric, indeed:
A = -1/2Vyy -

49



Curvature and the Inertio-
Gravitational Field

Does the vanishing of the curvature
tensor imply the vanishing of the
inertio-gravitational field?

Many current authors say “Yes”

Einstein said a resounding:
”NO' |”
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Einstein to von Laue 1950

“It is true that in that case [the compo-
nents of the curvature tensor] vanish,
so one might say: “There is no
gravitational field present.” However,
what characterizes the existence of a
gravitational field from the empirical
standpoint is the non-vanishing of the
. ..



Einstein to von Laue 1950

If one does not think in such intuitive
(anschaulich) ways, one cannot compre-
hend (begreifen) why something like
curvature should have anything to do
with gravitation in the first place. In that
case, no reasonable person would have
hit upon anything. The key to understand-
ing the equality of inertial and gravita-
tional mass would have been missing.”
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The Volume StructureV

Picks out an equivalence class of
sets of basis vectors defining a
unit four-volume in space-time.

Two sets are equivalent if they
are related by an equiaffine
transformation € SL(4, R)



The Volume Structure ¥V




Similarity Transformation




Equiaffine Transformation




Compatibility Conditions: Equi-
Affine Spaces

If the affine connection and the
first prolongation of the volume
structure are compatible, then
parallel transport of volumes is
path-independent, and the
connection is called equiaffine,
with symmetry group SAff(4).



Compatibility Conditions: Metric
and Connection

GR includes compatibility conditions
between the chrono-geometry and the
inertio-gravitational field.

The usual mathematical form:

The covariant derivative of the
covariant metric with respect to the
connection vanishes:

DKgW = 0.
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Compatibility Condition
DKgW =0

The usual physical interpretation:

1) proper spatial and temporal intervals
are preferred parameters along affine
autoparallel (now also geodesic) curves;

2) rods and clocks still read proper spatial
and temporal intervals as they move in the
inertio-gravitational field.
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Form of Compatibility Condition
From the Lagrangian

Let g = (-g%)Y2g*v. The Lagrangian density is:

L =5“VAW(F, orl’).

Variation of the torsion-free connection I"’M:
6A;u\ =D, (6/“’#,\), SO

oL = g“"EA v
=D, [g~6,]1-D, (g )6I,,

The first term is a total divergence and can be
eliminated. So the resulting equation is:



Compatibility Condition

The form of the compatibility condition is
D.g" =0,

a condition on the contravariant metric
density:

= axﬂ’w + rv:o\g”/\ + WKAHAV - rxgﬂv-
Contracting with the inverse g, ,

r.=1/2g4,0,g" =0,n (-g*y*/

which is the metric equiaffine condition.
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Unimodular
Transformations

An equiaffine transformation in the tangent
space T, M corresponds to a unimodular
transformation in the space-time manifold
M. The group SL(4, R) of equiaffine
transformations corresponds to the group
SDIff (M) of unimodular transformations,
which also have determinant = 1.
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Invariance Under What Group of

Diffeomorphisms?

“It is to be emphasized that we have no
sort of justification for general covariance
of the gravitational equations. ... [W]e do
not know if there is a general group of
transformations, with respect to which the
equations are covariant ... The question of
the existence of such a group ... is the
most important one ...” (Einstein 1913)
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Einstein had
it right on

4 November
1915




Einstein Adopts Volume-
Preserving Transformations

“Just as the special theory of relativity is
based upon the postulate that all
equations have to be covariant relative
to linear orthogonal transformations, so
the theory developed here rests upon the
postulate of the covariance of all systems
of equations relative to transformations
with the substitution determinant 1.”
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On General Relativity Theory

“Because of the scalar character of

V=g, one can simplify the basic formulas
of the formation of covariants, as
compared to those of general covariance;
which in short means, the factors v—g

and 1/V-g no longer occur in the basic
formulas, and the distinction between
tensors and V-tensors drops out.”
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Unimodular Transformations

Today, we call “transformations with the
substitution determinant 1” unimodular
transformations, and there are strong
arguments for their adoption on the basis of
numerous theories, both mathematical and
physical, including all theories of

gravitation based on the equivalence
principle.
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The Big Question

Why did Einstein move back
from unimodular trans-
formations to arbitrary
diffeomorphisms?

No time to discuss this question here. See
papers by JS and Kaca Bradonjic¢



UCPR Lagrangian

The Lagrangian density is now:
L=e’g MVAHV (nKMv’ eﬂ)’
and variations are to be taken w.r.t.
e? (1), <g*v (9) field equations,
I'I"W(36) compatibilty conditions

©, (4) equiaffine condition.



Unimodular Group

Under the unimodular group, g/’ splits into a
scalar field e¥ and a conformal metric ‘g*":

ghv = cgiv

‘g™ is a tensor with det = -1, and now

represents the physical metric.

So: -g*= e, In (-g”) V2= 2¢ and
r.=20.

is the equiaffine condition.



Unimodular Group

The connection I*, splits into a trace-free
part, which is now the projective connection
Nn“ . and its trace, which is now a one form
(covariant vector) O, .

The equiaffine condition is now
0.=20.p,

which is quite independent of the conformal
and projective structures.
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Under Unimodular
Transformations:

The conformal metric <g*v determines
Null hypersurfaces; together with the
scalar field e? it governs the:
propagation of massless fields.
The projective connection N*, determines

Autoparallel paths; together with the one
form O, it governs the:

behavior of massive bodies.
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Superpotentials

There are a denumerably infinite number
of superpotentials, tensor densities differing

in weight, from which the Einstein field
equations may be deduced. Only one is
conformally invariant, the one that defines a
gravitational angular momentum complex

such that the total angular momentum
transforms as a free antisymmetric tensor.
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Gravitational Superpotential in
UCPR

In UCPR this superpotential:
S[BK][Aa] (chac KA gBAc Ka)’
which had been a tensor density,

is the one formed naturally from the
contravariant conformal metric gV

and hence is a tensor— another
argument for UCPR!
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Some Things Einstein Got Right!!
(but only later one)

2) Space-Time Structures

a) chrono-geometry- first historically; it is
represented mathematically by a metric
tensor.

Equivalence principle: Inertia and Gravitation
are “wesensgleich”— essentially the same.

b) inertio-gravitational field- first
logically; it is represented mathematically by
a linear connection.
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Don’t take my word-

Ask the maestro
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Einstein, The Meaning of Relativity,
Appendix to 5t" ed (1955)

The development ... of the mathemati-
cal theories essential for the setting up
of general relativity had the result that
at first the Riemannian metric [chrono-
geometry]was considered the funda-

mental concept on which the general

theory of relativity and thus the avoid-
ance of the inertial system were based.
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Einstein, The Meaning of Relativity,
Appendix to 5t" ed (1955)

Later, however, Levi-Civita rightly pointed
out that the element of the theory that
makes it possible to avoid the inertial system
is rather the infinitesimal displacement field
. [the inertio-gravitational field]. The metric
or the symmetric tensor field g, which
defines it is only indirectly connected with
the avoidance of the inertial system in so far
as it determines a displacement field.
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Einstein’s last publication, April 1955

[I]t seems to me that Levi-Civita’s most
important contribution lies in the
following theoretical discovery: the
most essential theoretical accomplish-
ment of general relativity, namely the
elimination of “rigid” space, i.e. of the
inertial system, is only indirectly
connected with the introduction of a
Riemannian metric.
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Einstein’s last publication, April 1955

The immediately essential conceptual ele-
ment is the “displacement field” (I'. ), which
expresses the infinitesimal displacement of
vectors. More explicitly, it replaces the para-
llelism of spatially separated vectors, posited
with the help of an inertial system, by an in-
finitesimal operation. ... In contrast to this, in
a certain sense it is of secondary importance
that a particular I'-field may be derived from
the existence of a Riemannian metric.
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Space-Time Structures

Any theory of gravitation— Newtonian, SR,
GR- incorporating the equivalence principle
must start from an inertio-gravitational field

These theories can only differ in the relation
between this inertio-gravitational field and
the chrono-geometry
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As We Have Seen, They Are Not
Irreducible

Metric » Affine Connection

abstraction
uonoensqe

Y Y
Conformal Structure  Projective Structure
(Causal Structure) (Inertial Field)
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Curvature Tensors in UCPR

1) The near field, tied to the sources of
the inertio-gravitational field, is best

described by
the projective curvature tensor.

2) The far field, needed to discuss

gravitational radiation that has escaped

from its sources, is best described by
the conformal curvature tensor.
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Curvature Tensors in UCPR

In contrast to the traditional ones,

the conformal and projective curvature
tensors defined in UCPR have
non-vanishing Ricci tensors;

so they can play a direct role in the
field equations.
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Tangent Space

SR holds in the tangent plane, its metric n is
invariant under equiaffine transformations.

Two basic types of tetrads:
On a time-like two-plane with units:

one time-like e,, one space-like e,
two null k =1/v2(e+e),/ =1/V2(e—e.)

Plus two orthogonal space-like vectors on
the orthogonal space-like two plane
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Time-Like Two-Plane
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Conformal Structure
A

Time

Light cone
Angles

between vectors of
same type

Ratios
of “lengths”




Conformal Structure

If one abstracts from the scale-changing
property of the metric, one gets the
conformal structure on the manifold.

Physically, this conformal structure
represents the causal structure of space-
time. The conformal structure of space-
time determines the phases of massless

test fields.
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Under Unimodular Transformations:

The (conformal) metric <g*” determines
Null hypersurfaces,

Plus the scalar field e% it governs the
propagation of massless fields

The (projective) connection I* , determines
Autoparallel paths,

Plus the one form O_ it governs the
behavior of massive bodies.
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The Eikonal Equation for
Light

cguvmluwlv= OI
where @ is the phase of the light

wave, is invariant under conformal
transformations

Light rays are the bicharacteristics of
this equation
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Characteristic Hypersurfaces

The characteristic hypersurfaces @ = const
are null since:

‘¢ D,,D,,= gk k, =0,
in which k, = d,@ is the null covector
“normal” to the hypersurface. But
kt=c<gtk
actually lies on the null hypersurface:
k@, =0.
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Bicharacteristic Rays

The conformal metric does not determine the

bicharacteristics: We may multiply ¢k* by any

non-vanishing scalar function e? and define
kt= e® kH .

To define periods and wavelengths, we need to
introduce the scalar volume function e® and
define the metric g+'= e? ‘g
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Temporal and Spatial
Projections of a Null Vector
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Symplectic Geometry

At this level of symplectic geometry, wave fronts have
Phases, and rays have periods (frequencies) and wave
lengths relative to some frame of reference.
Given an orthonormal basis in this f.o.r., we project k*
onto the time-like vector to get the period T:
kel =cT
onto a space-like vector to get the wave length A:
ket = A,

Since k" is the diagonal of a square, the two must be
numerically equal: cT=A. Andsince T=1/v, Av=c.



Highest Level of Abstraction:
Contact geometry

One can formulate:
Huygen’s principle,
characteristic wave fronts,
Fermat’s principle,
bicharacteristic rays
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Contact Structure

s




Mechanics vs Optics

Mechanics: Spacelike Hyper-
surface— the normal leads from
one hypersurface to the next

Optics: Null Hypersurface— the
normal lies on the hypersurface, a
ray leads from one wave front to
the next



Huygens’ Principle
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Huygens’ Principle

Wavelet Wavelet
source point source point
\. \
Wave front . Wave front Wave front
1 2 1

(@) (b)
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Huygen’s & Fermat’s Principles
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Relations Between The
Four Principles

Fermat » Huygens

v k4

Maupertuis »  Feynman



Far Field- Pure Radiation

Gravitational-Wave Polarization

(b)
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Far Field- Pure Radiation

Conformal Metric: Conformal
curvature tensor

Weak Field Approx’ n: Assume
the gravitational field is weak,
SO we can treatitas a
perturbation around a flat
Minkowski space-time metric



Asymptotic Quantization

The Bondi-Metzner-Sachs field of any bounded
radiating source asymptotically approaches the
“free” gravitational radiation field, which is
represented by the conformal structure at nuli
infinity as defined by Penrose. This field has
been quantized by techniques anticipated by
Komar and developed in full detail by Ashtekar.
The resulting asymptotic gravitons are
representations of the Bondi-Metzner-Sachs

group.



Abhay Ashtekar:
Asymptotic Quantization

,,,,,,,,,




Future Timelike Infinity

Future Null Infinity Future Null Infinity

+
g

Spacelike Infinity Spacelike Infinity

spacelike

timelike

Past Null Infinity

g

Past Null Infinity

Past Timelike Infinity
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Petrov-Pirani Classification




The Peeling Theorem




Asymptotic Quantization

One can treat “pure” radiation fields
independently of their sources; one needs only
conformal structures to formulate the results
mathematically, interpret them physically, and
describe procedures for their measurement. it
should thus be possible to quantize these fields
directly. The homogeneous Maxwell equations are
conformally invariant, so one should also be able
to treat interacting “free” electromagnetic and
gravitational fields by conformal techniques.
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Near Field— Sources

Projective Connection: Projective
curvature tensor

Post-Newtonian Approx’ n:
assume motions of sources are
slow, so that we can treat the
gravitational field as a perturba-
tion about a Newtonian solution.



Newtonian Theory-Modern
Version

Even at the Newtonian level,
gravitation is not an external force
acting on bodies, but a modification
of the hitherto fixed inertial structure
of space-time, which now becomes a
dynamical structure, the inertio-
gravitational field.
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“Einstein’s
Intuition & the
Post-Newtonian
Approximation”

(35, published
2006,based on paper

given in 2002)
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The Bronstein Square

Gen. Non-Rel. S-T (G)

G

Inertio-Gravitational Connection

4

C

Chronompetry  Combine .
+ Geomgtry Geo
Dynfmize
Inertial Connection
Galilean S-T 1

Gen. Rel. S-T (¢,G)

no-
etry

Minkowski S-T (c¢)
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What is four-dimensional

Newtonian gravitation?

[A]lthough ... it leads us beyond Newton’ s
original theory, the following definition seems
to me to do no violence to the concept of a
Newtonian-style gravitational theory: We shall
require Newtonian chronometry and geometry
and the compatibility conditions between both

and the inertio-gravitational connection to hold.

In other words, a Newtonian-style theory is one
that is based on a Galileian manifold and a
compatible affine connection.
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What is four-dimensional
Newtonian gravitation?

Newtonian theory... allows us to go a bit further
than traditional Newtonian gravitation theory. ...
[A]nalysis of the compatibility conditions on the
t[etrad] c[oefficients of the] c[onnection] shows
that they allow the Iy, to be non-vanishing;
this is well known, since they correspond
physically to the electric-type Newtonian
gravitational field produced by masses at rest,
i.e., the p term in the 7190 component of the
stress-energy tensor-- all that conventional
Newtonian theory considers.



What is four-dimensional
Newtonian gravitation?

But the compatibility conditions also allow
non-vanishing '), ., which does not
seem to have been noted. Physically,
these components correspond to a mag-
netic-type Newtonian gravitational field,
produced by moving masses, correspond-
ing to the pv or T (9) components and not
present in traditional Newtonian theory.
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What is four-dimensional Newtonian
gravitation?

It is then simple to show that a rotating source,
by creating such a magnetic-type Newtonian
gravitational field 9, ., drags along the
inertial frames with it. So the recent
observation of the dragging of inertial frames
by the rotation of the earth is a confirmation of
the existence of a Newtonian magnetic-type
field. We are still far from being able to
observe any GR corrections to this effect.
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What is four-dimensional Newtonian
gravitation?

The compatibility conditions between the
dynamic inertio-gravitational connection and
the fixed Euclidean geometry on the fixed
absolute time hypersurfaces T = const imply
that the trace of the connection vanishes.

So it is a projective connection, and it is the
projective Ricci tensor that enters the
gravitational field equations.
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What Can UCPR Contribute?

Quantize the near field produced by
motion of the source using the
projective curvature tensor

Quantize the far radiation field using the
conformal curvature tensor

Connect the two by the method of
matched asymptotic expansions
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For More Details See

“Quantum Gravity: A Heretical Vision,”
in S. Burra et al. (eds.), Frontiers of
Fundamental Physics and Physics
Education Research (Springer
Proceedings in Physics 145, 2014), pp.
149-158,

and/or my Power Point:



Quantum Gravity: A Heretical
Vision

John Stachel
FFP12, Udine 21-23 November 2012

You can contact me for comments, questions and copies at

john.stachel@gmail.com
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Current Work in
Progress

The role of the Frolicher-
Nijenhuis Bracket in the
contravariant metric
approach to GR



Cauchy Initial Value Problem

Starting with the covariant metric g, and
contravariant vector field V¥(x) defining a
fibration of ‘M, one picks an initial hypersurface
and drags it by the vector field to produce a
foliation of ‘M. One then decomposes g, w.r.t.
this fibration and foliation, and poses a Cauchy
problem with initial data on one hypersurface:

first fundamental form ‘g, and
second fundamental form h, , =-1/2L/g .
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Cauchy Initial Value Problem
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Cauchy Initial Value Problem

By requiring V to be a geodesic normal field
n, we can show that:

£?'qg,=2hprh, —B° B° R, .n"n°).
B° B° R, . n®n°is determined by six field
equations B° B° R, =0 together with ‘g,
and h, ; and the Gauss-Codazzi equations
together with ‘g, , and h , determine all
other components of the Riemann tensor.
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Is There a Dual Initial Value

Problem?

But suppose, starting with the contravariant
metric gV and covariant vector field w , (x)
defining a foliation of ‘M, one picks an initial
curve. Can one drag it by the covector field to
produce a fibration of ‘M?

And if so, can one then decompose g"" w.r.t.
the fibration and foliation, and pose an initial
value problem for the fiber curve’s part of g+'?

And if so what takes the place of the Lie
derivative?
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Yes! There is a Dual
Approach

Take three commuting vector fields W(A)“

that span each of the hypersurfaces of the
foliation:

w, Wi =0,
and drag VY with each of them:

We showed this preserves the condition
w, Vi=1.
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Yes! There is a Dual Approach

Since the three W ,* commute, the fiber
created by dragging the initial fiber to any
other point will be independent of the path
taken between the two points.

So we have produced a fibration of ‘M. We
can now show that

W, LV =w, Wiy, V1V -
Here, the Frolicher-Nijenhuis Bracket takes
the place of the Lie derivative
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The Frolicher-Nijenhuis Bracket

We can show that, for a vector-valued one-
form w, W, and a vector field V¥, the
Frolicher—Nijenhuis bracket is:

[w, W, V]Vgy=w, L,V —(L,w )W
If
w, V=1 and w WH=0,
this reduces to
[w, W, V]Vgy = w, L VY
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The Frolicher-Nijenhuis Bracket

“Here we present the The Frolicher-
Nijenhuis Bracket (a natural extension of
the Lie bracket from vector fields to
vector valued differential forms) as one
of the basic structures of differential
geometry and we base nearly all
treatment of curvature and Bianchi
identities on it.”
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The Frolicher-Nijenhuis Bracket

“This allows us to present the concept

of a connection first on general fiber
bundles (without structure group), with
curvature, parallel transport and Bianchi
identity, and only then add G-
equivariance as a further property for
principal fiber bundles.”



The Frolicher-Nijenhuis Bracket

“We think that in this way the under-
lying geometric ideas are more

clearly understood by the novice than
in the traditional approach, where too
much structure at the same time is
rather confusing.”



Vielen Dank

fur lhre
Aufmerksamkeit




